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Abstract. It is shown that the symmetric group S, may be usefully embedded in the 
orthogonal group On, and that this embedding leads directly to an n-independent ‘reduced’ 
notation for both the spin and ordinary representations of S , .  Making use of this embed- 
ding, together with the properties of Q-functions (or Hall-Littlewood functions), branching 
rules for 0,J S, are developed and the general rule for the decomposition of spin 
representations under S ,  JSn..l is obtained. Simple methods are given for calculating all 
possible Kronecker products involving the spin and ordinary representations of S ,  and the 
resolution of Kronecker squares into their symmetric and antisymmetric parts. The spin 
representations of S ,  are systematically classified as to their orthogonal, symplectic or  
complex characters. The emphasis throughout is on obtaining results that obviate the need 
for explicit character tables and presenting results in an n-independent manner as much as 
possible. 

1. Introduction 

The symmetric group S, has long been of interest to physicists and chemists who have 
sought to exploit the permutational symmetry associated with many-fermion and 
many-boson systems. These applications have usually made use of the well developed 
theory of the ordinary representations of S,, (Murnaghan 1938, Littlewood 1950, 
Robinson 1961). The problem of resolving the Kronecker products of the ordinary 
representations of S, has received considerable attention, and techniques have been 
developed that obviate the need to use explicit character tables (cf Murnaghan 1937, 
1938, Littlewood 1958a, b, Butler and King 1973). Furthermore, many of the results 
have been given in an n-independent form using a ‘reduced’ notation for labelling the 
irreducible representations (irreps) of S,. 

The spin (or projective) irreps of S, have received far less attention, although 
physicists are familiar with the spin representations of crystallographic point groups. As 
long ago as 191 1 Issia Schur, having previously investigated the representations of any 
finite group by linear fractional substitutions (Schur 1904, 1907), directed his attention 
to the study of the linear fractional substitution representation group 2, of S, (Schur 
1911). This group was later shown to be isomorphic to the 2 ( n  !)-order group r,, called 
the spin group of S, (Morris 1962a, b). The ordinary characters of S, are also characters 
of r, and the remaining characters of r, are known as the spin characters of S,. 

Methods of constructing spin character tables of S, are of recent origin (cf Morris 
1962a, Read 1977). Remarkably little is known about the resolution of Kronecker 
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products involving the spin representations apart from the explicit use of character 
tables. This contrasts strongly with the corresponding results known for the ordinary 
representations of S, .  While the branching rule for the reduction of the ordinary irreps 
under S ,  .1 S,-l is well known (Boerner 1970), the corresponding rule for the spin 
representations would still appear to be incomplete (cf Wales 1979). 

In this paper we shall first review some relevant, though possibly unfamiliar, aspects 
of the ordinary representations of S ,  and then consider some of the properties of the 
spin representations of S,.  We then present some simple results relevant to associated 
and self-associated representations and establish an 0, =) S ,  embedding. The forma- 
tion of branching rules for 0, S ,  is then considered, leading to a 'reduced' notation for 
the spin representations of S, ,  making possible many n-independent results. The first 
application is to discuss the n-independence of the dimensions of the spin represen- 
tations of S,. The properties of the Q-functions are then exploited to give the S ,  .1 S,-l 
branching theorem. An inner multiplication of Q-functions with S-functions leads to a 
simple procedure for resolving the Kronecker product of the basic spin representation 
of S, with any ordinary representation of S ,  into spin representations of S, .  These 
results, together with consideration of the difference characters of S, ,  give a general 
procedure for resolving arbitrary Kronecker products without the explicit use of 
character tables. We are then able to use the method of plethysm to resolve Kronecker 
squares of the spin representations into their symmetric and antisymmetric parts, and 
eventually to classify the spin irreps as to their orthogonal, symplectic or complex 
characters. The application of these results to the problem of calculating the n j  and 3jm 
symbols associated with the spin and ordinary irreps of S ,  is briefly considered. 

The results given in this paper remove many of the past difficulties associated with 
the spin representations of S, ,  and are presented in the hope that they will stimulate 
applications of these important groups to physical problems. 

2. Ordinary representations of 6, 

The ordinary irreps of S ,  may be uniquely labelled by the ordered integer partitions 
( A )  = ( A l ,  A2,  . . . , A k )  of the integer n, i.e. 

A i + A z + .  I .+hk = n  A i a A 2 2 . .  . Z = A k Z = O .  

These representations of S ,  may be given an orthogonal Young-Yamanouchi realisa- 
tion (cf Robinson 1961, p 38). Thus the ordinary irreps of S ,  are all of the orthogonal 
type, though not necessarily unimodular. A simple prescription for determining 
whether an irrep of S ,  is unimodular or not has been given by King (1974), and readily 
allows us to assert that the [n - 1, 13 irrep of S, is never unimodular. We note however 
that the sum of an even number of non-unimodular orthogonal irreps will always form a 
reducible unimodular representation of S,. 

The product of two ordinary characters of S ,  may be expressed as a sum of simple 
ordinary characters of S, by standard use of the character tables (cf Ledermann 1977). 
If ( A )  and ( p )  are partitions of the same integer n then 

(1) 

and use of the character table yields the integers However, the object of this paper 
is to be able to evaluate Kronecker products of the irreps of S ,  without explicit use of 
the character tables. 

U (U) xb '̂xb"' = gA& X P  
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It is well known that the properties of the ordinary characters of S, may be 
expressed in terms of those of the Schur functions (or S-functions) (cf Ledermann 1977, 
Littlewood 1950). The outer multiplication of S-functions of weights n and m, 
{A} * { p } ,  is evaluated by the Littlewood-Richardson rule (cf Littlewood 1950) and 
corresponds to the decomposition of the induced representation of S,,, from S, x S,. 
The inner product { h } o { p }  of two S-functions of the same weight, say n, has been 
defined (Littlewood 1956) by the relation 

{A 1 O { P I  = gA,y{v} (2) 

where there is a one-to-one correspondence between the partitions and gA," appearing 
in (1) and (2). The systematic evaluation of the inner products of S-functions has been 
the subject of many investigations (cf Littlewood 1956, Robinson 1961, Butler and 
Wybourne 1969). The inner products of S-functions may be systematically evaluated 
without explicit use of character tables, and thus the Kronecker products for any S, may 
be resolved. However, such an approach inherently yields n-dependent information 
and as such frequently obscures underlying simplicities in the theory. 

The possibility of developing an essentially n-independent resolution of the 
Kronecker products was first considered by Murnaghan (1937, 1938), who suggested 
the use of a 'reduced' notation for labelling the irreps of S, that is n-independent. In the 
reduced notation, the irrep of S, usually labelled by the symbol [ A ] =  
[n - m, p i ,  p2, . . .I, with ( p )  being a partition of m, is labelled by the symbol ( p ) =  
(p l ,  p 2 , .  . .). We shall use angular brackets ( ) to specify irreps of S, in the reduced 
notation (Butler and King 1973). The reduced notation for the ordinary irreps of S, 
arises naturally out of the embedding of the symmetric group in the linear group L, 
(Littlewood 1958a). Since the ordinary irreps of S, are orthogonal, including those of 
the defining irrep (l), it is possible to treat S, as a subgroup of 0, (Butler and King 
1973), i.e. 

L, .1 0, .1 s,. (3) 

Indeed, for the ordinary irreps of S, we may make the embedding 0,-1= S,, an 
embedding exploited by Butler and King who have given extensive branching rules for 

The use of the reduced notation has led to the n-independent evaluation of the 
Kronecker product of symmetric group representations ( A )  and ( p )  as (Littlewood 
1958a) 

0,-1.1 s,. 

( A ) ( P )  = ( ( { A } / { a } { B } )  * ( { p } / { a } { y } )  ( { P }  " ( ~ 1 ) )  (4) 
%P.Y 

where {p} and { y }  are necessarily both partitions of the same number. It is important to 
note that in transforming from the n-independent reduced notation ( p )  to the n- 
dependent standard notation [ A ]  = [n - m, ( p ) ]  the resulting symbols may not be in the 
standard form. However, non-standard symbols can always be reordered to give the 
standard form by noting that (Murnaghan 1938) 

[ A i , .  . . , A I ,  h I+l , .  . . , h k ] = - [ h l , .  . . , A I + l - l , A z + l , .  . . , h k ] .  ( 5 )  

The group S, possesses two ordinary one-dimensional irreps, [n] and [l"]. Starting 
with an irrep [A]  of S,, we may form an irrep [XI by noting that 

[A][1"] = [XI. 
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The irrep [A] will be said to be the associate irrep of [A]. If [ A ]  E [XI the two irreps will be 
said to be self-associated ; otherwise they are mutually associated. Self-associated 
irreps of S, will be indic%d by use of a dagger. Thus [321It designates a self-associated 
irrep while [222] and [222] = [3’] are mutually associated irreps of S 6 .  

In the reduced notation [n] and [l”] become labelled as (0) and (ln-’). The (lfl-’) 
irrep will frequently be designated as (6), where the tilde reminds us that it is formed 
from the association of (0). Finally, we shall write 

(C;) = ( W F )  (7) 

which is the n-independent version of (6). Care must be exercised in interpreting (C;) in 
the reduced notation, as the tilde operation does not imply conjugation of the partition 
( A )  as it does in the standard notation. Thus (l)*[n -1, 11 while (I)*[; - 1, i]= 

We note that self-association for the ordinary irreps of S, is an n-dependent 
property. The equivalence or otherwise of ( p )  and (C;) can only be decided for 
particular values of n. Thus (21) is self-associated for S6 but not for any other value of n. 

[2 1“-7 * (1 n - 2 ) .  

3. Spin representations of S, 

The symmetric group S, of order n!  has two spin groups r, and rk of order 2(n!) 
(Morris 1962a). It may be shown (Morris 1961) that only one of the spin groups needs 
to be considered since the characters of the two groups are trivially related. The 
characters of the positive classes of r, and rk are the same, whilst the characters of the 
negat&e classes of rk are found by multiplying the corresponding character of I?,, by 
i =d-l. The group r n  is isomorphic to Schur’s 2, group (Schur 1911) and we shall 
restrict our attention to just the group T,,. 

The two-valued spin irreps of S, correspond to single-valued irreps of rn  and may 
be uniquely labelled by the ordered partitions of n into k unequal parts (Schur 191 l ) ,  
i.e. 

To distinguish spin irreps from ordinary irreps of S ,  we shall use a prime. Thus [421]’ is 
a spin irrep while [421] is an ordinary irrep of S,. 

If (n - k )  is euen the irrep is self-associated and will be designated as [A]” while if 
(n - k )  is odd we obtain an associated pair of spin irreps designated as [A]‘ and [XI’. We 
note that [A]’+ [XI’ corresponds to a reducible self-associated representation for (n - k )  
odd. As a consequence we shall often use [A]’+ without regard to the parity of (n - k ) ,  
with the understanding that if (n - k )  is odd then 

A 1 > A \ 2 > .  . .>hk>O A l S A z f . .  . f h k = n .  

[A]‘t=[A]’+[X]’ (n - k )  odd. (8) 

For each value of n there is a basic spin representation [n]’t of degree 2[n’21, where 
[XI denotes the greatest integer less than or equal to x. The basic spin representation is 
such a representation from which every representation of S, arises in a Kronecker 
power of the basic spin representation. Morris (1962a) has given a prescription for 
calculating the simple spin characters of r, for the positive classes (T )  = (1*’3“’5*’ . . .) 
based on the properties of Q-functions, and has gone on to show that for (n - k )  odd the 
negative class ( A l A 2 .  . , A k )  has a non-zero spin character given by 

[ h r h z . .  . hk/2]’/’ (9) [ A ] r  - . ( n -k+1) /2  x(A) - 1  
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with xi:? = -xi;!’ while the spin character of every other negative class is zero. From 
(9) we conclude that a spin irrep of S ,  will be necessarily complex if ( n  - k + 1 ) / 2  is odd. 

In dealing with associated spin representations it is useful to exploit the properties of 
difference characters. Following the notation given by (8), we have 

[ A ] ’ ’  = [ A ] ’  + [ I ] ’  ( n  - k )  odd ( 1 0 )  
and the diference 

[ A ] ” ’ =  [ A ] ‘ - [ I ] ’  ( n  - k) odd. 

Hence 

[A]‘ = ( [ A ] ’ +  + [ A ] ’  ” ) / 2  

[ I ] ’  = ( [ A ] ’ +  - [ A ] ’  “ ) / 2 .  

For the negative class ( A l A 2  . . A k )  we have the difference character 

The difference character for all other classes is zero. 

4. Properties of associated and self -associated representations 

In the previous sections we have noted that both the ordinary and spin irreps of S, may 
be divided into two classes: associated and self-associated irreps. This is a general 
property of groups that contain the one-dimensional alternating irrep. 

Two theorems concerning associated and self-associated irreps play an important 
role in our subsequent analysis of the properties of the irreps of S,. The proofs of these 
theorems follow trivially from the definitions of the self-associated and associated 
irrepst. These theorems reinforce the usefulness of the notation developed in ( 7 )  and 
( 1 0 ) .  

Theorem 1.  If a group G contains a subgroup H with A:, A, ,  I , ( = E G A ~ )  and p:,  p,, 
bl(= e H p I )  being their respective self-associated and associated irreps and EG,  eH their 
corresponding alternating irreps, then 

(9 A t  J H  = a:p: + b : ( p ,  +b,) (14a) 

where the coefficients ai, bi are non-negative integer multiplicity numbers and the 
Einstein summation convention is adopted. 

Theorem 2. Let AT, Ai, x i ( =  eGAi) be self-associated and associated irreps of a group G. 
The Kronecker products of the irreps of G necessarily satisfy the identities 

t e.g. if A ‘J H = a i p j  + bip i  + c{bi then the self-association property leads directly to b{ = c j  etc. 
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(iii) 
(iv) if AixAi=atA:+bt ,Ak 

Ai X Ai = A i  X Ai 

then Ai XXj=a;,A: +b,kink. 

5. S, as a subgroup of 0, 

As noted earlier, since the ordinary irreps of S, are orthogonal, including that of the 
defining irrep ( l ) ,  it is possible to treat S, as a subgroup of 0,. Two embeddings deserve 
consideration. The first is the non-unimodular embedding defined by 

[11.1(1> + ( 0 )  (16) 

which is possible for 0, 3.5, but not for SO, xS, .  The second is the unimodular 
embedding defined by 

[11.1(1) +@ (17) 

which makes possible the embedding of S, in SO,. However, for n even the basic spin 
irrep is non-unimodular and hence cannot admit a proper embedding in SO,. Both 
embeddings are possible for 0,3 S,, and for our purposes we will restrict our attention 
to the non-unimodular embedding (16). 

(Butler and King 1973). However, such an embedding cannot be maintained for the 
spin irreps of S,. 

Given the embedding (16), the decomposition of an arbitrary ordinary irrep [A] of 
0, into S, irreps will yield the terms contained in the plethysm 

We note that for the ordinary irreps of S, we can make an embedding in 

((1) + (0))O [A I. (18) 

This plethysm can be converted into a plethysm involving S-functions by writing (Butler 
and King 1973) 

[A 1 = {A }/I ((-{2}) 0 { r } )  (19) 

leading to the evaluation of plethysms of the type 

((1) + (0))0{CL}. (20) 

(( 1) + (0)) 0 {I r }  = (1') + (1 '-I). (21) 

The evaluation of these plethysms can be made by first noting that (Littlewood 1958a) 

Furthermore, any S-function { p }  may be expanded as the product of S-functions of the 
type {l'} by noting that (Littlewood 1950) 

{1"}= a,, (22) 

{ C L }  = la k,-s+rl (23) 

((~)+(O))O{CLL)= ((l)+(O))0(lak~-~+rl) .  (24) 

where a, is an elementary symmetric function C a l a z .  . . a,, and that 

where ( b )  is the partition conjugate to ( p ) .  Thus it becomes possible to rewrite (20) as 
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The resulting plethysms may then be evaluated by noting that 

((1)+(0))0UiUj.. . U, = ((l~)+(l~-*))((l’)+(lj-l)). . . ( ( lx)+(lx- l ) )  (25) 

with the Kronecker products being evaluated using (4). 
The above prescription, while tedious in application, is complete and capable of 

being programmed for computer evaluation. As an example we list the O,&S, 
branching rules for partitions of four or less in table 1. 

Table 1. Branching rules 0, + S,. 

0 4 ) + ( i 3 )  
[2121 (21’) + 2(21) + 2(i3) + (2) + 2 ( 1 3  
[2’1 (2’) + 2(21) +(3) + 3(2) + (1’) + (1) 
[311 (31)+3(21)+2(3)+(13)+4(2)+5(1’) +4(1)+(0) 
[41 (4)+(21)+2(3) +4(2)+2(1*)+5(1) + 3(0) 

We must now consider the spin irreps of 0, xS,. The spin irreps of 0, may be 
labelled as [A; A ]  with the basic spin irrep being designated by A = [A; 01 (cf King 1975). 
It is readily seen that under 0,J S, we have 

Al[n]”. (26) 

This result holds for all n if we remember the notation introduced in (8). This suggests 
that it should be possible to develop an n-independent reduced notation for the spin 
irreps as well as for the ordinary irreps of S,, i.e. 

A &  (0)’t. (27) 

We shall proceed to develop, and exploit, just such a reduced notation for spin irreps of 

The spin character of the irrep [A; A ]  of 0, may be expressed as the product of the 
basic spin irrep A with a sum over the ordinary irreps of 0, by writing (King 1975) 

Sn. 

[A; A ]  = A 1 (-l)”[A/m]. 
m 

The reduction to S, may now be accomplished by using (26) to reduce the basic spin 
irrep and (18) to reduce the ordinary irreps of 0, into irreps of S,, leading finally to 

The right-hand side is a compound spin character of S, which has been expressed in an 
n-independent notation and must be expressible in terms of simple spin characters in an 
n-independent manner. To this end we introduce the reduced notation 
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where ( p )  is a partition of m. We then rewrite (29) as 

[A; A I L C  (CL)’. (31) 
A short list of the decompositions arising in the reduction of (29) is given in table 2. 

In order to develop our theory further, it is essential to be able to express an arbitrary 
spin irrep (p ) ’  as a product of the basic spin irrep (0)’’ with a sum over the ordinary irreps 
of S ,  and vice versa. 

Having established the validity of the reduced notation for spin irreps of S , ,  we next 
consider the n-dependence of the dimensional formulae for the ordinary and spin irreps 
of s,. 

Table 2. [A; O]J(O)” P ( T ) .  

6. Dimensions of irreps of S ,  

The formula for the dimensions f L A 1  of the ordinary irreps [ A ]  of S ,  is well known 
(Robinson 1961): 

f A 1  = n ! / H ( A )  (32) 
where the hook length factor is given by 

where ( A )  and (I) are mutually conjugate partitions of n. It is possible to display the 
n-dependence of an irrep [ A ]  explicitly, taking advantage of the reduced notation to 
give (Butler and King 1973) 

where now H ( F )  is an n-independent function and the remaining product term is 
explicitly n-dependent. 

The dimension formula for spin irreps of S ,  was given long ago (Schur 1911) for a 
k-part partition [A1 . . . hk]  as 
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Taking advantage of the reduced notation, we find 

where r is the number of parts and m the weight of the partition ( F ) ,  Ck a binomial 
coefficient and 

k 

p)' = m ! JJ !)-I (37) 
i = l  

is an n-independent factor which we shall term the reduced dimension of the spin irreps 
of s,. 

The above results allow us to determine explicitly the n-dependence of the dimen- 
sional formula appropriate to any reduced spin irrep (F) ' .  Thus for (31)' we readily 
deduce that f"" = 2 and thence 

7. Q-functions and S ,  irreps 

The S-functions were introduced by Schur in his development of the theory of the 
ordinary irreps of S ,  (Schur 1901). Later, in his study of the linear fractional 
substitution representation group Z, of S, ,  he introduced a second symmetric function 
termed the Q-function (Schur 191 1, p 224). It was much later realised that the S- and 
Q-functions were particular cases of what are now known as Hall-Littlewood functions 
(Hall 1957, Littlewood 1961). The properties of the Hall-Littlewood functions have 
been surveyed by Morris (1976) and a concise description has been given by Thomas 
(1976). 

Consider a symmetric function of the indeterminants a l ,   ay^, . , . , a,; then if 

1 m 

ITi- - 1 + h,x' 
(I-cx~x) r = l  

(38) 

then h, defines the Schur fu:ictions {r}. The symmetric function h, is the sum of all 
monomial symmetric functions of degree r in the ai's. The Schur function {A} 
associated with an arbitrary partition ( A )  is then defined by (Littlewood 1950) 

{ A } h  = IhA,-i+jl. (39) 

A Schur function {A} may be conveniently expanded into products of hk by use of the 
Young raising operator Sij ,  which operates on a partition ( A )  by increasing A i  by one and 
decreasing Ai by one with i < j .  We then have (Thomas 1980) 

and conversely 
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remembering that 

1 / ( 1 - s , ) = 1 + 6 i j + s ; + .  , . .  
As usual, non-standard symbols are reordered to standard form using ( 5 ) .  

The Schur functions may be generalised by considering the expressions 
m 

= l +  c qrxf  
( l -sffjx)  r = l  

with 

(43) 

It is readily seen that t = 0, s = 1 yields the usual S-functions. 

cy1, a 2 , .  , , , a,  and p1, .p2 , .  . . , P, and the function 
A further generalisation is made possible by considering two sets of indeterminants 

together with the requirement that P, is expressed in the form 

where QA( t )  is a symmetric function in a l ,  a2,. . . , a,, QI,( t )  is the same symmetric 
function but in p l ,  p2, . . . , p,, and k A ( t )  is a polynomial in t which depends on the 
partition ( A ) .  The functions QA ( t )  are referred to as Hall-Littlewood functions. 

The Young raising operators Sii may be used to express the S-functions { A } ,  in terms 
of the Hall-Littlewood functions to give (Littlewood 1961, Thomas 1976) 

and vice versa, 

i < j  

In the theory of the symmetric group, the functions with t = 0 are simply the Schur 
functions that arise in the theory of the ordinary irreps of S,. Specifically, if ( A )  is a 
partition of n and is the irreducible character of the irrep [ A ]  for the cycle 
p = (1P12P*. . . n o n ) ,  then 

where g, is the order of the class ( p )  and SP is the symmetric power sum. 
The Hall-Littlewood functions QA (-1) are identical to the Q-functions introduced 

by Schur (1911), and play a similar role for the spin characters of S ,  as do the 
S-functions for the ordinary characters. Henceforth we shall write Q ( A )  = QA(-l) and 
refer to the Q ( A )  simply as Q-functions. Each Q-function will be associated with a 
partition ( A )  of n into k integer parts. The partition need not be in standard form. 
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Q-functions corresponding to non-standard partitions may be converted into the 
standard descending order by noting the following four rules (Morris 1962a, 1976). 

(1) If any two parts are equal the Q-function is zero. 

(2) Q( ..., ,... = -Q( ..., A , + ~ , A ,  ,... ) (50)  

and hence the Q-function is zero if any two parts are equal. 

is different. 
(3) A Q-function will be zero if any part is negative and the magnitude of every part 

(4) Q( ..., A ~ , - A ,  ,... I 0 ( 5  1) 

(52) 

while 

Q( ,.., - A , , A ,  ,... = 2(-1)A‘Q( ..., A , + ~ , A , + ~  ,... ). 

Application of the above rules allows us to reduce any Q-function either to zero or to 
the form where ( A )  is a partition of n into k unequal parts such that 

A l > A 2 > .  . > h k > O ,  (53) 

the same condition that applies for the existence of spin irreps of S,. 

by Schur’s relation (Schur 1911) 
The connection between Q-functions and the spin characters of S, is made explicit 

where &I’ is a simple spin character of the class (T) = (lai3a3 . . .) involving odd cycles 
only, p = a1 + a3 + , , , , h, is the order of the class (T), h the order of r,, S ,  = S?*Sy3 . . . 
and E = 0 or 1 according as ( n  - k )  is even or odd. If E = 0 then 1.::; is a self-associated 
double spin character of S,, and if E = 1 it is an associated spin character with 
&$ = - - ( ~ ~ ~ .  Equation (54) may be contrasted with the corresponding result for 
S-functions, equation (49). In the latter case the summation is over all the classes of S,, 
whereas in the former case the summation is restricted to the classes involving odd 
cycles only. 

The outer product of two Q-functions, say Q ( A 1  and Q(&), of weights n and m may be 
resolved into a sum of Q-functions of weight m + n to give 

Q ( A )  * Q ( K )  = r A F L Y Q ( V ) .  ( 5 5 )  

The non-negative numbers rhW” may be determined by use of (48) to expand each 
Q-function as a sum of S-functions, then the outer products of the S-functions 
calculated by the usual Littlewood-Richardson rule, and then the resulting S-functions 
converted back into Q-functions using (47). Alternative methods are available (Morris 
1962a, 1963, 1964a, b). 

Q-function division may be defined by 

Q ( A / @ )  = r F u A Q ( v )  (56) 

Q(&) * Q ( V j  = rlL;Q(A). (57) 

Outer Q-function products are closely related to the induction S, X S, tS,+, and 

where revA is the same as the coefficient that appears in the outer product 

the Q-function division to the restriction S,,, J. S, x S ,  for spin characters. 
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For later use we note that (cf Morris 1962a) 

Q ( A ) Q ( i )  = 2Q(Ai+1 ,..., A k )  + * * + ~ Q ( A ,  ,..., A k + 1 )  + Q ( A ~  ,..., A k , i )  

Q ( A / i )  = ~ [ Q [ A , - I  ,..., A k )  + - * +  Q ~ A , , . . . , A ~ - , ) ~ - S A ~ , ~ Q ( A ~  ,..., ~ ~ - 1 ) .  

( 5 8 )  

and hence 

(59) 

It is also useful to define the inner product of a Q-function with an S-function 
defined on the same indeterminants by writing 

Q(A)  b } h  = g A w y Q ) ( u )  (60) 

where (A) ,  ( p )  and (Y) are all partitions of n. The inner product may be evaluated by 
using (48) to express Cl(A) as a sum of S-functions { A } q ,  then evaluating the S-function 
inner products and finally converting the resultant S-functions back into Q-functions 
using (47). In making use of (47) and (48), it is essential to realise that the Young raising 
operators must be used prior to use of the reordering rules. 

8. The S. 1 S,-l branching rule 

The S, 1 S,-l branching rule for ordinary irreps of S ,  is well known, and in the reduced 
notation amounts to 

where (p/l) is determined by removing one cell from the Young diagram of ( p )  in all 
ways that result in a standard Young diagram. The rule as stated (61) is n-independent. 

The statement of a similar rule for the spin irreps of S ,  is complicated by the 
existence of se!f-associated irreps and associated pairs of irreps. Two special cases have 
been discussed (Wales 1979), but no general statement of the rule for spin irreps 
appears to have been given. The general rule follows by noting (59) and theorem 1 of 
5 4 to give in the reduced notation 

where (p/l)‘ is evaluated exactly as for the ordinary irreps and we use the notation 
implied by (8). In (62a) we clearly have n - k odd whereas in (62b) n -- k is even. 

The following examples illustrate the application of the two rules. 

(421)’~(421)’’+(42)” C(321)” -(a)’=(421)’t+(42)’+(321)’t. 

Thus for SI3JS12 

[6421]’L [5421]”+[642]’+ [6321]”. 

Likewise 

(421)”~(421)”+(42)’t+(321)’t  =(42l)’+(m)+(42)’’+(321)’+ (z)’. 
Thus for S14J SI3  

[7421]’+J [6421]’ +[m]‘ + [742]’+ + [7321]’ + [m]’. 
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9. Kronecker products of basic spin with ordinary irreps for S, 

We now consider the resolution of the compound character ( O ) l ( r )  as a sum of simple 
spin characters of S, .  This is entirely equivalent to resolving the Kronecker product of 
the basic spin character (0)l with an ordinary character (T) .  The properties of 
Q-functions make this a comparatively easy task. 

From (60), after noting (48), we have 

In order to facilitate the reduced notation, we now introduce a special Young raising 
operator Soj, which in the reduced notation has the effect of decreasing F~ by one unit. 
We can now write a reduced version of (47) and (48) appropriate to the Q-functions for 
any S, as 

Equation (63) now becomes, in the reduced notation, 

Q(o)  0 ( ~ > h  = n (1 + S i j ) Q ( F ) *  
O G i < j  

Application of (66) to an r-part reduced partition will yield 2c;+' terms, not 
necessarily all distinct. The results for r S 3 are given in table 3. For a specific partition, 
non-standard Q-functions may arise and must be reduced to the stendard descending 
order by use of the modification rules given earlier. 

Thus in the case of a four-part reduced partition we expect (66) to yield 1024 terms. 
Specialisation to the reduced partition (4321) results in the survival of just 88 Q- 
functions, and of these only 25 are distinct. Restriction to a particular value of n may 
result in even fewer terms surviving. Thus if n = 15 the product involving (4321) yields 
a total of 56 Q-functions of which 15 are distinct. 

The evaluation of a specific inner product, say 

%I [A 1 = 

may be checked by noting that 

Table 3. Q(o) 0 (h)h  inner products. 
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where k is the number of parts in the partition ( p ) ,  gnhg is the multiplicity associated 
with Q[@I and the dimensional factors are evaluated using (32) for the ordinary irreps 
and (35) for the spin irreps. 

As an example, we note from table 3 that for (321) we have 

Q ( o ) o  (321)= Q ( s ) + ~ Q ( ~ ) +  Q(3)+ Q(51)+2Q(42) 

+3Q(32)+3Q(41)+3Q(31)+ 0 ( 2 1 ) +  Q(321). 

Specialisation to n = 11 gives 

Q[1110 [5321] = (Q[65]+2Q[74]+ Q[s31)+(2Q[5421+3Q[632]+2Q[6411+3Q[7311 

+ Q[s2i]) + Q[s3211 

and (67) yields 

32 x 2310 = 1344 + 2  x 2880+2400+2 x (2 x 1760+3 x 2464+ 3 x 3168 

+ 3 x 3168 + 1232) + 2 x 1056 = 73 920 

whereas for n = 10 we find 

Q[ioi 0 [ 4321]= (2Q[64]+ Q~73])+3Q[532]+2Q[54i]+ 3Q[63i]fQ[~2ii)fQ[43211 

with (67) giving 

32 x 768 = 2 x (2 x 672+768)+2 x (3 x 864+2 x 896+3 x 1600+800)+4 x 96 

= 24 576. 

We are now in a position to be able to give a complete algorithm to evaluate the 
Kronecker products (0)lt(p), as follows. 

Algorithm 1. 
(1) Evaluate the Q-function inner product Q(o) 0 (p)h using (66). 
(2) Use the modification rules to convert any non-standard Q-function into stan- 

(3) Replace every Q-function, 
dard descending order. 

appearing in the product by 

( P Y .  2[(k-n(mod 2))/21 

If n - k is odd (p)” E ( p ) ‘  + (6)’. 

Thus for (0)’t(321) with n odd we obtain 

(O)lt(321) = (5)’t + 2(4)’t +(3)’t + 2((51)It + 2(42)” + 3(32)” 

+3(41)”+ 3(31)’t +(21)’t)+2(321)’t 

from which we deduce for n = 11 

[l 1]’t[5321] = [65]’+ + 2[74]” + [83]” + 4[542]’t + 6[632]” 

+ 6[641yt + 6[731yt + 2[821Ift + 2[5321]? 

Similarly for n = 12 

[12]’t[6321]’ = 2([75]’+ + 2[84]lt + [93]”) + 2([651Ift + 2[642]” + 3[732]It 

+ 3[741]”+ 3[831]It + [921]’t) +4[6321]’+. 
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We note that for n even (0)” = (0)’ + (6)’ and our algorithm will not of course yield the 
product (O)’(p), except where ( p )  corresponds to a self-associated irrep. To separate 
out the terms (O)‘(p) and (6)’(p) from (0) ’ t (p)  requires use of difference characters. 

Our algorithm can be used to expand recursively any spin irrep (p)”  as a linear 
combination of terms of the type (O)‘+(A). For example, we may readily establish the 
results shown in table 4. 

Table 4. Expansion of spin irrepst in terms of the basic spin irrep and ordinary irreps of S,. 

t Where the coefficient appears as (;) it is to be included only for n even. 

10. Kronecker products of spin with ordinary irreps 

We now consider the general Kronecker product of a spin irrep ( v ) ’ ~  with an ordinary 
irrep ( p ) ,  with the understanding that (v)“ is either a self-associated irrep or an 
associated pair of irreps. Algorithm 1 may be simply extended to give the following 
algorithm. 

Algorithm 2. 
(1) Expand the Q-function Q(”) as a sum of S-functions using (48). 
(2) Evaluate the terms in the relevant S-function inner products using (4). 
(3) Express the resulting S-functions as Q-functions using (47). 
(4) Use the modification rules to convert any non-standard Q-function into stan- 

(5) Replace every Q-function Q(p) ,  including Q(&), by 
dard descending order. 

(P) ’+ .  
2[(k-n(mod 2))/21 

If n - k is odd ( P ) ; ~  = (p ) ’  + (6)’. 
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(21)q-+ 0(21)+Q(3)+2Q(z)+Q(i) 

(3)q -+ Q ( 3 )  + Q(2) 

(I2), -+ Q(2) + Q(i) + Q(o) 

and hence 

Q(2) (12)h = 2Q(31) 3Q(21) + 2 Q(4) + 6Q(3) + 8 Q(2) + 4Q(1) + 2 Q(o)  

and thus for n odd we have 

(2)’+(12) = 2(2(3l)’t+3(21)’’)+(2(4}‘t+6(3)’1+8(2)’t+4(1)’t)+ 2(0)” 

and for n even 

(2)”(12>.= 2(31)”+3(~1)‘t+2(4)’t+6(3)’t+8(2)‘’+4(l)’t+(0)’’ 

The above algorithm successfully resolves any product (v)”(,u). It remains to 
consider the case where ( v ) ~  = (v)’ + (I/”)’, which arises when n - k is odd. A study of the 
difference characters and Morris’s theorem 5 (Morris 1962a) shows that the terms in 
( v ) ’ ( , ~ )  and (I/”)’(@) may be found using the following algorithm. 

Algorithm 3. 
(1)  Evaluate (v)”(,u) using algorithm 2. 
(2) Divide the coefficients associated with every term found in (1) by two. The 

integral part of the resulting coefficients is the number of times its corresponding irrep 
occurs in (I/)’(@) and in (I/”)’(@). If there is no residue then the resolution is complete. 

(3) The only possible residue will be a term (v)“ = {v)’+(I/”). If the characteristic 
xi$ = +1,  (v)’ is assigned to ( v ) ’ ( p )  and (G)’ to (v)’(@), while if xjr; = -1 the opposite 
assignment is made. 

The characteristics may be readily calculated by first noting that the class 
( n  - m’, (v)) can only involve distinct cycles and 

where m and m’ are the weights of the partitions ( k )  and ( v )  respectively. The value of 
the characteristic x& may be found from a theorem due to Littlewood (1950, p 70) (cf 
Rutherford 1948, p 76). 

Theorem. The characteristic x\r/ is given by 

where there is one term di for each way in which the shape T can be built up by making 
firstly a regular application of p1 spaces, secondly a regular application of p2 spaces, . . . , 
and lastly a regular application of ph spaces, and where d, = (-l)‘l, ti being the sum of the 
numbers of vertical steps in the h applications. 

As an example of the application of algorithm 3, we consider the evaluation of 
(2)‘(1) and (2)’(1). From use of algorithm 2 we deduce that for n odd 

(2)’t( 1) = 2(21)’’ + 2(3)’+ + 3(2)’t + 2(l)” 
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while for n even 

(2)’’(1) = 2(21)” +4(3)”+6(2)”+4(1)’+. 

For n euen the above result is complete since (2)’’ is self-associated. For n odd we must 
have 

(2)‘(1) 3 (21)’’ + (3)‘’ + (2)’’ + (1)” 

and 

(i)’(l) 1(21)’~+(3)’~+(2)’~+(1)‘’. 

The residue is (2)’’ = (2)’+ (5 ) ’ .  We need to evaluate x{$. Consider &;; use of 
Littlewood’s theorem yields the diagram 

with just one vertical step, and hence we deduce that 

(1)  - 1. 
X ( 2 ) ’  - - 

This implies that (3)’ must be assigned to (2)’(1) and (2)‘ to (?!)’(l), and hence for n odd 

(2)’(1) =(21)’t+(3)’t+(2)’t+(l)’t+(5)’ 

(??)’(l) = (21)’t+(3)’’+(2)’t+(l)’t+(2)’. 

11. Kronecker products of spin irreps 

It remains now to develop an algorithm for resolving the Kronecker product of a spin 
irrep (p)’ with another spin irrep (v)’ into a sum of ordinary irreps. To this end we first 
compute ( p ) ” ( v ) ” ,  This may be achieved using the following algorithm. 

Algorithm 4. 

irreps to yield 
(1) Expand (p) l t  and (v)’’ as products of the basic spin irrep (0)” with ordinary 

W’’ -+ ( 0 ) ’ ’ k J d )  

(4’+ + (0)’’(gv“(d). 

(2) The product (0)”X (0)’’ is evaluated for S 2 v + l  as 

(0)’“)‘’ = f ( lX)+  
x = o  

and for S2,, as 

(0)“)” = 2 k1 ( l”)+.  
x =o 

(3) The calculation is now reduced to the evaluation of Kronecker products of 
ordinary irreps and may be effected by use of (4). 
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The expressions given in (68a) and (68b) follow directly from resolving the 
Kronecker products of the basic spin irreps of 0, (Littlewood 1950) and then making 
use of the 0, + S, reductions discussed in 8 6. 

Use of the above algorithm readily leads to the n-independent results 

( l )q l ) ‘+  = ( O ) q 2 )  +(12)+ 2(0) - (1)) 

(2)‘t(l)‘t=(0)’t2((3)+(21)+2(1)-(2)-2(0)) 

with the right-hand side being divided by four for n even. If the above results are 
specialised to S7 we find 

[61]“[61]”= 2[7]t+4[61]’+6[52]’+8[512]’ +4[43It+ 10[421]t+8[413]’+4[322]1 

[52]’t[61]’t = 4[61]t+8[52]t+8[512]t+8[43]’+20[421]t+ 12[4l3It+ 12[322]t. 

( 6 9 ~ )  

(69b) 

The [61]” and [52Irt irreps of S7 constitute pairs of associated irreps. To resolve the 
products it is necessary to consider the properties of the difference characters intro- 
duced in (11). 

Consider the product (p ) ’ ( v ) ’  where p+ v and the irreps are associated irreps. Since 
(p) ’ (v) ‘ ’=  (p)” (v) ’=  0, we have from consideration of (12a) and (12b) that 

( ; A ) ’ + ) ’  = (p)’(y”)’= :(/.L)’t(v)’t (70)  

and hence if p # v we may trivially resolve the Kronecker products. Thus from (69b) 
we have 

[52]’[61]‘ = [52]’ x [a]‘ 
= [61]t+2[52]t+2[512]’+2[43]’+5[521]’+3[413]‘+3[322]‘. 

When p = v we have 

The problem is solved once (p ) ’  ”* is resolved. Consider the character of (p ) ‘  “’. This 
will have non-zero characteristics onlyfor the classes of ( A I  . . . A k )  and ( A I  . . . Ak)’ .  Let 
(p ) ’  ‘” = g,,’(p); in each of these classes we have 

and n - k + 1 is even, so 
p - 2 i n - k f l  [ n - m ’ , p ]  

g,, - X ( h )  * 

The characteristics ~ f h n , ” @ ’  may be found from Littlewood’s theorem. 
In the case of S7 we easily find 

[61]’ ’ I 2  = 2([17] - [ 7 ]  + [52] -[2’13]- [421] + [321’]) 

(75)  
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and hence from (69a) and (71) we deduce that 

[61]’[61]’= [61]t+[52]t+[52]+2[512]t+2[413]t 

+ [43]t + 2[421]+ +[I4211 + [322It+ [ i ]  

+ [43]t + 2[421]’+ [4Tl]+ [322]+ + [7]. 

[61]’[z]’= [61]t+[52]t+[5^i]+2[512]t+2[413]t 

As a consequence of the preceding, it is evident that any Kronecker product 
involving spin irreps may be systematically resolved. Explicit determination of the 
difference characters is only required for the special case of ( A )  = (k ) .  

12. Plethysms for spin irreps 

We now consider the problem of resolving the Kronecker square of the spin irreps of S, 
into its symmetric and antisymmetric terms. We first note that for 02u+l we have 

A@{2} = [12”]+[12”-4]+[11”-8]+. . . 
A @  {12} = [ 12”-2] + [ 12”-7 + [ 12”-10] + . . . 

for v = 0, 1 (mod 4), while 

A@{2} = [12u-2]+[12v-6]+[12u-10]+, , . 
A@{12}= [12”]+[12u-4]+[12”-8]+. . . 

for v = 2 , 3  (mod 4). 
Consideration of the restriction 0 2 v + 1  S Z ~ + I  then leads to 

(0)%{2}= (12”)+(12u-1)+(12v-4)+(12u-5)+. . . 
(o)”o{i2} = (F2) + (12u-3) + (Y6) + (F7)+, , . 

(o)lto{2} = (F2) + (Y3)+ (Y6) +(12u-7) + . . . 
(o)‘+ { i2} = ( 12y) + (12u-1) + ( 12u-4) + ( i2”-7 + . . . 

for v = 0 , l  (mod 4) and 

for v = 2 , 3  (mod 4). 
In an exactly similar way we find for SzV 

(0)’~0{2} = ( P - ~ )  + + + ( P - ~ )  + 2 ( ~ - ~ )  + (12~-7) + . . . 
(0)’@{2} = + p3) + 2(12y-4) +p5) + (12”-7) + 2(12”-’) + (12v-9) + 



346 Luan Dehuai and B G Wybourne 

A representation A is said to be orthogonal if the identity irrep occurs in the 
symmetric part of the Kronecker square (i.e. in A 0 { 2 } )  or symplectic if it occurs in the 
antisymmetric part (i.e. in A @{12}). If the identity irrep fails to occur in either A O{2} or 
A x{12} then A corresponds to a complex irrep. This inspection of (78a)-(79b) shows 
that for 

if v = 0, 3(mod 4) (0)’t is orthogonal 

while 

if v = 1,2(mod 4) (o)’+ is symplectic. 

For S 2 v + l  the basic spin irrep is always self-associated and never complex. 
In the case of S z u  the basic spin irrep is an associated pair of irreps (0)“ = (0)’ + (6)’, 

and it is necessary to use difference characters to complete the analysis of the Kronecker 
square. We have 

(82) 

the basic spin irrep (0)lt has the property 

(0)’ ‘ (0)’ = ~[(0)“”0)’’2] 
where 

(O)’+* = 2 y (1”)’ 
x = o  

x = o  

a result that comes from (74) and noting that 

antisymmetric parts to give 

= (-1)” if p = 1” or else i s  zero. 
The square of the difference character (0)’ ”‘ may be analysed into its symmetric and 

(0)’”0{2} = ((0)‘-(6)’)0{2} 

= (0y2 - (0)’(6y 

(0)’ I’ 0 { 1 2 }  = (0y2 - (O)’( 6)’ 
and 

and hence 

(0)”’0{2}= (0)’”o{l2}= (o)’”2/2. (86) 

The Kronecker square of the basis spin irreps (0)’ and (6)’ of S z U  may be evaluated 
using (82), (83) and (84). The resolution of the Kronecker square into its symmetric and 
antisymmetric terms then follows by noting that 

(0)’O (2) = ;[(O)”O{2) + (0 )”0  (2) - (O)’*] 

(0)’O { 1 2} = &O)”O {12} + (0)”O{l2} - (O)’”]. 

Noting (85a) - (86 )  leads to the conclusion that 

if Y = 1, 3(mOd 4) (0)’ and (6)’ are complex ( 8 8 a )  
while 

if Y = O(mod 4) (0)’ and (6)’ are orthogonal i88b) 

or 
Y = 2(mod 4) (0)’ and (6)’ are symplectic. 
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Once the plethysms of the basic spin irreps of S, are known, we may evaluate 
plethysms for any spin irrep of S,, since we can always reduce any spin irrep to the 
product of the basic spin with a sum of ordinary irreps. With the Kronecker square of 
the basic spin irreps resolved as above, we can now in principle resolve the Kronecker 
square of any irrep of S,. The resolution of higher Kronecker powers would first require 
the resolution of higher powers of the basic spin irreps. In these cases the 0, .1 S ,  
embedding can be exploited to yield the resolution of the appropriate powers of the 
basic spin irreps. 

13. Classification of spin irreps 

The spin irreps of S, may be classified as to their symplectic, orthogonal or complex 
characters by use of the classification found for the basic spin irreps and remembering 
that the ordinary irreps of S, are all orthogonal. The following algorithm leads to a 
complete classification. 

Algorithm 5. 
(1) If ( n  - k + 1)/2 is odd then the spin irrep [ A l  . . . . hk] ’  is complex. 
(2) If ( n  - k + 1)/2 or ( n  - k )  are even for n = 2 v  + 1 we have for the spin irreps 

v = 0, 3(mod 4) 

v = 1,2(mod 4) 

orthogonal 

s ymplectic 

while for n = 2v we have 

Y = 0, l(mod 4) 

U = 2, 3(mod 4) 

orthogonal 

3ymplectic. 

14. Concluding remarks 

The main thrust of this paper has been to develop a reduced n-independent notation for 
the spin irreps of the symmetric group and then to establish a series of simple algorithms 
to enable their properties to be evaluated in a largely n-independent manner. The need 
for explicit character tables has effectively been eliminated. Much of this work has a 
direct bearing on the problem of constructing 3jm and nj symbols for the symmetric 
group, particularly since every irrep of a given S, must arise in some power of the basic 
spin irrep of S,. Starting with the basic spin irrep, it should be possible systematically to 
build up the 3jm symbols involving both spin and ordinary irreps of S,. 
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